采用熱噴涂技術(shù)不僅能提高機(jī)器設(shè)備的耐磨損性、耐腐蝕性、耐侵蝕性、熱穩(wěn)定性和化學(xué)穩(wěn)定性,而且能賦予普通材料特殊的功能,諸如高溫超導(dǎo)涂層、生物涂層、金剛石涂層、固體氧燃料電池(SOFCs)電極催化涂層等,因此,熱噴涂技術(shù)必然會(huì)愈來(lái)愈引起人們的重視,并在各個(gè)工業(yè)領(lǐng)域獲得越來(lái)越廣泛的應(yīng)用。但是,實(shí)際零部件因其材質(zhì)、形狀、大小及其應(yīng)用環(huán)境、服役條件等存在很大差別,要想成功采用熱噴涂涂層來(lái)解決所面臨的技術(shù)問題,必須遵循特定的過程,其中,最重要的有以下五個(gè)關(guān)鍵過程。
1.準(zhǔn)確分析問題所在,明確涂層性能要求;
2.合理進(jìn)行涂層設(shè)計(jì),包括正確選擇噴涂材料、設(shè)備、工藝及遵循嚴(yán)格的涂層質(zhì)量性能評(píng)價(jià)體系等;
3.優(yōu)化涂層制備工藝;
4.嚴(yán)格控制涂層質(zhì)量;
5.涂層技術(shù)的經(jīng)濟(jì)可行性分析。
涂層設(shè)計(jì)起著承上啟下的作用,是采用熱噴涂技術(shù)成功解決實(shí)際問題的基礎(chǔ),是所有環(huán)節(jié)中最重要的環(huán)節(jié)之一,在進(jìn)行涂層設(shè)計(jì)時(shí)要考慮涂層所涉及到的各個(gè)環(huán)節(jié),具有明顯的系統(tǒng)特性。因此,為了獲得滿足使用性能要求的涂層,在進(jìn)行噴涂前,必須進(jìn)行周密、合理的涂層設(shè)計(jì)。
熱噴涂涂層設(shè)計(jì)的主要內(nèi)容包括:第一,根據(jù)零部件表面所處的工況條件或?qū)σ呀?jīng)發(fā)生表面失效的零部件的分析結(jié)果,確定零件表面涂層或表面涂層體系的技術(shù)要求,包括結(jié)合強(qiáng)度、硬度、厚度、孔隙多少及大小、耐磨性、耐蝕性、耐熱性或其它性能等;第二,運(yùn)用所掌握的熱噴涂技術(shù)基礎(chǔ)知識(shí)(包括噴涂材料、噴涂工藝、涂層性能等),進(jìn)行經(jīng)濟(jì)技術(shù)可行性分析,以滿足性能要求為基礎(chǔ),考慮涂層經(jīng)濟(jì)性,進(jìn)而選擇恰當(dāng)?shù)膰娡坎牧稀⒃O(shè)備及工藝方法;第三,編制合理的涂層制備工藝規(guī)范;最后,提出嚴(yán)格的涂層質(zhì)量檢測(cè)與控制標(biāo)準(zhǔn)、零件包裝運(yùn)輸條件等。現(xiàn)在,更為嚴(yán)格的要求甚至包括對(duì)噴涂原材料生產(chǎn)廠商提出全面質(zhì)量管理要求。所有上述內(nèi)容構(gòu)成一個(gè)完整的熱噴涂涂層設(shè)計(jì)的全過程。
需要特別指出的是,熱噴涂涂層的性能雖然主要取決于噴涂材料的性能,但還明顯受到所選定的噴涂設(shè)備和噴涂工藝的影響。同一種噴涂材料,當(dāng)采用不同的噴涂設(shè)備、不同的噴涂工藝參數(shù)進(jìn)行噴涂時(shí),所得涂層的性能會(huì)存在很大差別。此外,涉及制備涂層的其它各個(gè)環(huán)節(jié)都會(huì)決定最終的涂層性能,如表面預(yù)處理、冷卻措施、涂層加工等,因此,只有對(duì)制備涂層的各個(gè)過程進(jìn)行全面的質(zhì)量控制,才可能獲得性能滿足要求的、質(zhì)量穩(wěn)定的涂層。
根據(jù)失效分析理論,失效模式分析是失效分析的核心內(nèi)容,是導(dǎo)致零部件失效的物理和(或)化學(xué)變化過程,在該過程中,零部件的尺寸、形狀、狀態(tài)或性能發(fā)生了變化,并由此引起整個(gè)機(jī)械產(chǎn)品的失效,例如,磨損失效、疲勞失效、腐蝕失效等。而決定零部件失效模式的主要因素包括零部件材料的性質(zhì)和狀態(tài)等內(nèi)在因素和零部件工況條件等外在因素,其中,引起零部件失效的外在因素,即應(yīng)力、環(huán)境和時(shí)間,是失效的誘發(fā)因素,通過零部件工況條件的深入分析可以了解清楚這些因素。
1.應(yīng)力因素
力是零部件工作的條件。應(yīng)力的種類、大小與狀態(tài)的不同組合是引起不同失效模式的重要的或決定性因素。應(yīng)力種類包括持久、交變、沖擊、接觸、磨擦、沖刷等;應(yīng)力狀態(tài)包括單純的拉伸、壓縮、剪切、扭轉(zhuǎn)、彎曲等應(yīng)力和復(fù)合作用的拉彎、壓彎、彎扭、拉扭、拉剪、彎剪、扭剪等應(yīng)力。應(yīng)力因素可以單獨(dú)、也可以與其它因素耦合在一起來(lái)誘發(fā)零部件的失效。
2.環(huán)境因素
環(huán)境因素主要包括溫度和介質(zhì)兩大因素。工作溫度一般可分為低溫、常溫、中溫、高溫和超高溫五類;工作介質(zhì)包括氣相(真空、特殊氣體、鄉(xiāng)村大氣、城市大氣、工業(yè)大氣等)、液相(淡水、海水、油、酸、堿、液態(tài)金屬等)、固相(接觸、摩擦、沖刷等)等。環(huán)境因素與應(yīng)力因素一樣,既可以單獨(dú)、也可以與其它因素耦合在一起來(lái)誘發(fā)零部件的失效。
3.時(shí)間因素
時(shí)間不能作為獨(dú)立因素來(lái)誘發(fā)失效產(chǎn)生,沒有應(yīng)力和環(huán)境因素的存在,時(shí)間因素就失去了意義。但是,當(dāng)時(shí)間因素與應(yīng)立因素和環(huán)境因素耦合在一起時(shí),它就變成一個(gè)非常重要的因素。
上述各種不同外界因素對(duì)零部件的失效起著各不相同的影響,從而產(chǎn)生不同的失效模式,各種主要失效模式與最主要、最典型的誘發(fā)因素之間的關(guān)系可參見相關(guān)資料。在進(jìn)行熱噴涂涂層設(shè)計(jì)時(shí),要特別注重對(duì)零部件表面失效產(chǎn)生影響的因素進(jìn)行重點(diǎn)分析,這些因素可能單獨(dú)作用于零部件,也可能耦合作用于零部件,而在耦合作用下,對(duì)零部件的破壞作用要嚴(yán)重得多。例如,醋酸泵柱塞表面涂層,該涂層使用工況要求既耐磨損又耐腐蝕,如果不考慮醋酸腐蝕僅考慮提高耐磨性能,采用超音速火焰噴涂WC/Co、Cr3C2-NiCr類涂層均能滿足要求,但該類涂層在醋酸條件下的耐腐蝕性能均被列為“不好”和“不推薦”涂層,因此,綜合考慮,不能選用該噴涂材料及工藝來(lái)制備醋酸泵柱塞表面涂層。
除了上述外在因素,零部件材料的性質(zhì)和狀態(tài)等內(nèi)在因素也對(duì)零部件的失效有重要影響,因此,在具體分析時(shí),要把零部件工況條件與零部件性能要求以及不同基體材料與不同工藝、不同噴涂材料與不同噴涂工藝所制造的零部件性能結(jié)合起來(lái),才有可能設(shè)計(jì)出高質(zhì)量的、合理的涂層。
1.常用粘結(jié)底層材料的性能要求
一般來(lái)講,作為粘結(jié)底層噴涂材料應(yīng)具有以下四方面的性能特點(diǎn):
(1)與基體表面結(jié)合強(qiáng)度高,甚至能產(chǎn)生微區(qū)冶金結(jié)合。特別是具有“自粘結(jié)”效應(yīng)的Ni-Al型復(fù)合粉末,在熱噴涂過程中,Ni與Al能發(fā)生化學(xué)反應(yīng),生成金屬間化合物,并釋放出大量熱量,甚至這一反應(yīng)過程能夠持續(xù)到粉末碰撞到基體表面時(shí)仍在進(jìn)行,該效應(yīng)十分有利于變形粒子與基體表面形成微區(qū)冶金結(jié)合,從而提高粘結(jié)合底層與基體之間的結(jié)合強(qiáng)度。
(2)具有抗氧化耐腐蝕能力。特別是作為陶瓷涂層的粘結(jié)底層,當(dāng)在高溫下工作時(shí),環(huán)境中的氧氣和腐蝕介質(zhì)能夠通過陶瓷涂層的孔隙侵入到粘結(jié)底層,這就要求粘結(jié)底層在高溫下能形成致密的氧化物保護(hù)膜,以保護(hù)基體金屬不被氧化和環(huán)境介質(zhì)的腐蝕。
(3)涂層表面具有合適的粗糙度,它不僅能為噴涂工作層提供良好的粗化表面,有利于提高工作層與粘結(jié)底層之間的結(jié)合強(qiáng)度,而且對(duì)工作層表面的粗糙度也有直接影響。
(4)具有合適的熱物理性能,特別是熱膨脹系數(shù)、熱導(dǎo)率等,最好介于基體材料和工作層之間,以減小兩者之間的熱膨脹不匹配性,降低涂層內(nèi)的熱應(yīng)力和體積應(yīng)力,有利于提高涂層的使用壽命。
鑒于粘結(jié)底層的重要性,在進(jìn)行涂層設(shè)計(jì)時(shí),應(yīng)綜合考慮基材熱物理特性和具體工況條件謹(jǐn)慎選擇。
2.粘結(jié)底層材料選擇方法
在進(jìn)行涂層設(shè)計(jì)時(shí),針對(duì)粘結(jié)底層的選擇,主要考慮以下兩方面因素的影響。
(1)粘結(jié)底層與基體材料的相容性。當(dāng)基材為普通碳鋼、合金鋼、不銹鋼、鎳鉻合金、鋁、鎂、鈦、鈮等材料時(shí),可選用具有“自粘結(jié)”效應(yīng)的噴涂粉末作為粘結(jié)底層材料,涂層十分致密,孔隙率低,能顯著提高表面工作層與基體之間的結(jié)合強(qiáng)度。但要注意,該類粘結(jié)底層在酸性、堿性和中性鹽的電解液中不耐腐蝕,不易在該類液態(tài)化學(xué)腐蝕條件下用作粘結(jié)底層。
當(dāng)基材為銅及銅合金時(shí),應(yīng)優(yōu)先選用鋁青銅作粘結(jié)底層,由于Cu和Al之間在熱噴涂過程中也會(huì)發(fā)生放熱反應(yīng),生成金屬間化合物,因此,鋁青銅在銅及銅合金表面具有一定的自粘結(jié)性,有利于提高涂層與基體之間的結(jié)合強(qiáng)度,且該涂層具有良好的抗熱沖擊性和抗氧化性。
當(dāng)基材為塑料及聚合物類基體時(shí),為避免基材表面被高溫粒子燒焦而出現(xiàn)“焦化”,從而影響工作層與塑料基體之間的結(jié)合,常常選擇低熔點(diǎn)金屬(如Zn、Al等)或塑料加不銹鋼復(fù)合粉末作為粘結(jié)底層材料。塑料加不銹鋼復(fù)合粉末是由塑料粉末和不銹鋼粉末復(fù)合而成的粉末,主要用作塑料類基體上噴涂高熔點(diǎn)金屬、陶瓷或金屬陶瓷涂層時(shí)的粘結(jié)底層材料。其中的塑料組分質(zhì)軟,且流平性好,使涂層與基體塑料有良好的粘結(jié)強(qiáng)度,并使塑料基體的受熱減至最小;而不銹鋼組分則具有良好的耐化學(xué)腐蝕性能,可形成鑲嵌在塑料涂層中的硬質(zhì)顆粒,有利于形成粗糙表面,為噴涂工作層提供比較理想的“錨固”結(jié)構(gòu),此外,不銹鋼組分還有利于把噴涂焰流的熱量散開,從而避免塑料基體產(chǎn)生局部過熱或焦化,對(duì)提高粘結(jié)底層與基體的結(jié)合強(qiáng)度有利。
當(dāng)基材為石墨基體時(shí),為防止石墨和鎢在高溫下發(fā)生反應(yīng)生成碳化鎢,引起石墨脆化,可噴涂鉭作為粘結(jié)底層。此外,鉭涂層與鋼基體之間也能形成自粘結(jié)結(jié)合。
值得注意的是,在熱噴涂技術(shù)中,鉬(Mo)也被作為一種具有自粘結(jié)效應(yīng)的粘結(jié)底層來(lái)廣泛使用。這是因?yàn)镸o在400℃下,會(huì)迅速發(fā)生氧化,生成具有揮發(fā)性的MoO3,產(chǎn)生急劇升華,裸露出的鉬的熔滴對(duì)大多數(shù)金屬及其合金的干凈平滑表面有極好的潤(rùn)濕鋪展性能,從而形成自粘結(jié)效應(yīng)。除金屬外,它還能夠粘結(jié)在陶瓷、玻璃等非金屬表面,但在銅及銅合金、鍍鉻表面、氮化表面和硅鐵表面等除外。
此外,具有優(yōu)異的抗高溫氧化性能和耐蝕性能的確NiCr合金,雖然不具有自粘結(jié)效應(yīng),但也是廣泛使用的一種粘結(jié)底層材料。
(2)粘結(jié)底層與工況條件。作為整個(gè)涂層的一部分,粘結(jié)底層的選用也必須滿足工況使用要求。由于應(yīng)用涉及的工況環(huán)境很多,也很復(fù)雜,下面僅從工作溫度和腐蝕環(huán)境兩個(gè)方面進(jìn)行闡述。
1)工作溫度。每一種粘結(jié)底層材料都有其適宜的工作溫度范圍,熱噴涂技術(shù)中常用粘結(jié)底層材料的特性及最高使用溫度如表所示。
粘結(jié)底層特性及最高使用溫度
粘結(jié)底層材料 |
涂層特性 |
應(yīng)用范圍 |
最高使用溫度/℃ |
Ni-Al (80/20) |
自粘結(jié),涂層致密,耐熱抗氧化,不耐電解質(zhì)溶液腐蝕 |
耐熱抗氧化涂層,在含電解質(zhì)的溶液中,不適宜用作粘結(jié)底層 |
800 |
Ni-Al (95/5) |
自粘結(jié),涂層致密,耐熱抗氧化,使用溫度更高,不耐電解質(zhì)溶液腐蝕 |
1010 |
|
NiCr-Al (94/6) |
自粘結(jié),涂層致密,耐高溫氧化和燃?xì)飧g,不耐電解質(zhì)溶液腐蝕 |
980 |
|
Ni-Cr (80/20) |
抗高溫氧化,耐多種化學(xué)介質(zhì)腐蝕,抗熱震 |
抗高溫氧化并耐溶液腐蝕的粘結(jié)底層 |
1260 |
Mo |
不耐氧化,耐多種強(qiáng)腐蝕介質(zhì)腐蝕,自粘結(jié),耐邊界潤(rùn)滑磨損 |
耐多種化學(xué)介質(zhì)腐蝕的自粘結(jié)涂層,耐邊界潤(rùn)滑磨損涂層 |
315 |
MCrAlY |
優(yōu)異的耐高溫氧化、耐燃?xì)飧g及耐熱震涂層,不耐電解質(zhì)溶液腐蝕 |
耐高溫?zé)嵴咸沾赏繉诱辰Y(jié)底層,抗高溫氧化涂層 |
1260~1316 |
2) 腐蝕介質(zhì)。對(duì)于在腐蝕介質(zhì)中工作的涂層,進(jìn)行涂層設(shè)計(jì)時(shí)要特別注意,粘結(jié)底層及工作層均應(yīng)首先具備抵抗工作介質(zhì)腐蝕的能力,此時(shí),選擇粘接底層時(shí),應(yīng)以耐工作介質(zhì)腐蝕作為優(yōu)先考慮條件,在此基礎(chǔ)上,再考慮盡可能提高結(jié)合強(qiáng)度,如果粘結(jié)底層選擇不當(dāng),涂層壽命很難滿足使用需求。例如,某醋酸泵軸套防腐耐磨涂層選用Al2O3-TiO2陶瓷涂層作工作層,當(dāng)采用Ni-Al型粘結(jié)底層時(shí),其使用壽命很短,大約只有兩周時(shí)間,有時(shí)甚至出現(xiàn)“脫殼”現(xiàn)象;而當(dāng)選用Mecto 700(Ni20Cr10W9Mo4Cu1C1B1Fe)時(shí),其使用壽命可長(zhǎng)達(dá)1.5-2年。由表中所列的常用粘結(jié)底層特性可知,Ni-Al型粘結(jié)底層均不耐電解質(zhì)溶液腐蝕,Ni-Cr(80/20)可耐多種化學(xué)介質(zhì)腐蝕及氣體腐蝕的能力,而Mo可耐多種強(qiáng)腐蝕介質(zhì)腐蝕。一些金屬涂層與所適應(yīng)的環(huán)境介質(zhì)如表所示。
部分金屬涂層及其適應(yīng)的介質(zhì)
涂層材料 |
鉬 |
鈦 |
鎳合金 |
不銹鋼 |
蒙乃爾 |
哈氏合金 |
鉛 |
鋁、鋅 |
錫 |
適用介質(zhì) |
濃鹽酸 |
熱的強(qiáng)氧化性溶液 |
堿 |
硝酸 |
氫氟酸 |
熱鹽酸 |
稀硫酸 |
大氣、水 |
蒸餾水 |
熱噴涂工藝的選擇原則如下:
熱噴涂工藝方法較多,但每一種方法都有其自身的優(yōu)點(diǎn)和局限性,從不同的角度進(jìn)行熱噴涂工藝選擇,會(huì)得出不同的結(jié)果。以高速火焰噴涂(簡(jiǎn)稱HVOF)為例,當(dāng)采用HVOF工藝噴涂金屬、合金及金屬陶瓷類材料時(shí),可獲得結(jié)合強(qiáng)度高(>70MPa)、致密度高(孔隙率<1%)、氧化物含量少的高質(zhì)量涂層,但該工藝也存在運(yùn)行成倍較高、對(duì)基體輸入熱量較大、不能噴涂氧化物陶瓷(注:個(gè)別系統(tǒng)能夠噴涂Al2O3、Al2O3-TiO2等低熔點(diǎn)陶瓷,如HV2000超音速火焰噴涂)等缺點(diǎn)。因此,在選擇熱噴涂工藝時(shí),應(yīng)針對(duì)具體需求進(jìn)行具體分析,下文分別從涂層性能、噴涂材料類型、涂層經(jīng)濟(jì)性及現(xiàn)場(chǎng)施工等四個(gè)方面進(jìn)行了分析。
1. 以涂層性能為出發(fā)點(diǎn)進(jìn)行選擇時(shí),一般考慮如下幾點(diǎn):
(1)涂層性能要求不高,使用環(huán)境無(wú)特殊要求,且噴涂材料熔點(diǎn)低于2500℃,可選擇設(shè)備簡(jiǎn)單、成本較低的氧乙炔火焰噴涂工藝。如一般工件尺寸修復(fù)和常規(guī)表面防護(hù)等。
(2)涂層性能要求較高、工況條件較惡劣的貴重或關(guān)鍵零部件,可選用等離子噴涂工藝。相對(duì)于氧乙炔火焰噴涂來(lái)講,等離子噴涂的焰流溫度高,熔化充分,具有非氧化性,涂層結(jié)合強(qiáng)度高,孔隙率低。
(3)涂層要求具有高結(jié)合強(qiáng)度、極低孔隙率時(shí),對(duì)金屬或金屬陶瓷涂層,可選用高速火焰(HVOF)噴涂工藝;對(duì)氧化物陶瓷涂層,可選用高速等離子噴涂工藝(如PlazJet等離子噴涂)。如果噴涂易氧化的金屬或金屬陶瓷,則必須選用可控氣氛或低壓等離子噴涂工藝,如Ti、B4C等涂層。
2.以噴涂材料類型為出發(fā)點(diǎn)進(jìn)行選擇時(shí),基本原則如下:
(1)噴涂金屬或合金材料,可優(yōu)先選擇電弧噴涂工藝。
(2)噴涂陶瓷材料,特別是氧化物陶瓷材料或熔點(diǎn)超過3000℃的碳化物、氮化物陶瓷材料時(shí),應(yīng)選擇等離子噴涂工藝。
(3)噴涂碳化物涂層,特別是WC-Co、Cr3C2-NiCr類碳化物涂層,可選用高速火焰噴涂工藝,涂層可獲得良好的綜合性能。
(4)噴涂生物涂層時(shí),宜選用可控氣氛或低壓等離子噴涂工藝。
3.以涂層經(jīng)濟(jì)性為出發(fā)點(diǎn)進(jìn)行選擇時(shí)。應(yīng)盡可能選用電弧噴涂工藝。
在噴涂原材料成本差別不大的條件下,在所有熱噴涂工藝中,電弧噴涂的相對(duì)工藝成本最低,且該工藝具有噴涂效率高、涂層與基體結(jié)合強(qiáng)度較高、適合現(xiàn)場(chǎng)施工等特點(diǎn)。幾種主要熱噴涂工藝的涂層特征及相對(duì)成本如表所示。
幾種熱噴涂工藝性能及成本比較
工藝 |
電弧 噴涂 |
火焰 噴涂 |
HVOF |
等離子 |
低壓 等離子 |
爆炸 噴涂 |
孔隙率(%) |
10 |
10~20 |
0.1~2 |
2~5 |
0.5 |
0.1~1 |
結(jié)合強(qiáng)度 |
很好 |
一般 |
極好 |
很好~極好 |
極好 |
極好 |
相對(duì)工藝成本 |
1 |
3 |
5 |
5 |
10 |
10 |
4.以能否進(jìn)行現(xiàn)場(chǎng)施工為出發(fā)點(diǎn)進(jìn)行工藝選擇時(shí),應(yīng)首選電弧噴涂,其次是火焰噴涂,便攜式HVOF及小功率等離子噴涂設(shè)備也可在現(xiàn)場(chǎng)進(jìn)行噴涂施工。目前,還有人將等離子噴涂設(shè)備安裝在可以移動(dòng)的機(jī)動(dòng)車上,形成可移動(dòng)的噴涂車間,從而完成遠(yuǎn)距離現(xiàn)場(chǎng)噴涂作業(yè)。
在實(shí)際使用中,因零件形狀、大小、材質(zhì)、使用環(huán)境及服役條件等存在千差萬(wàn)別,要獲得最佳的涂層使用性能,必須將熱噴涂技術(shù)所涉及到的各個(gè)環(huán)節(jié)綜合在一起進(jìn)行優(yōu)化處理,特別是要注意將噴涂材料與各種熱噴涂工藝的特點(diǎn)結(jié)合起來(lái),內(nèi)容涉及所選擇的噴涂材料、涂層厚度、相應(yīng)的噴涂設(shè)備和工藝參數(shù)等,涂層結(jié)構(gòu)設(shè)計(jì)是否合理一般要通過生產(chǎn)檢驗(yàn)或現(xiàn)場(chǎng)試驗(yàn)才能確定。在熱噴涂應(yīng)用技術(shù)中,所涉及的涂層結(jié)構(gòu)大體可分為以下四種。
1.單層結(jié)構(gòu)
單層結(jié)構(gòu)涂層是指只需要在經(jīng)過預(yù)處理的零件表面噴涂單一成分涂層,即可滿足使用性能要求的涂層結(jié)構(gòu)模式。在實(shí)際應(yīng)用中所占比例較大,是最常用的熱噴涂涂層結(jié)構(gòu)之一,可為基體提供防腐、耐磨、抗高溫氧化、導(dǎo)電、尺寸修復(fù)、延長(zhǎng)使用壽命等功能。所有的熱噴涂工藝,包括普通火焰噴涂、噴焊、電弧噴涂、HVOF、爆炸噴涂、等離子噴涂等均可獲得具有特定性能的單層結(jié)構(gòu)涂層。
2.雙層結(jié)構(gòu)
雙層結(jié)構(gòu)涂層是指采用兩種噴涂材料在經(jīng)過預(yù)處理的零件表面分兩次噴涂形成的涂層結(jié)構(gòu),每層具有不同的功能,通常與基體相鄰的涂層稱為粘結(jié)底層,其主要作用是提高基體與涂層之間的結(jié)合強(qiáng)度;外層或表面層稱為工作層或面層,其主要作用是滿足零件所要求的性能。這種結(jié)構(gòu)涂層在實(shí)際應(yīng)用中所占的比例也較大,也是最常用的熱噴涂涂層結(jié)構(gòu)之一。兩種涂層可采用同一種熱噴涂工藝方法來(lái)完成,如采用單一工藝方法,如普通火焰、爆炸噴涂或等離子噴涂來(lái)分別噴涂?jī)煞N涂層,也可采用不同的熱噴涂方法來(lái)完成,如可采用電弧噴涂粘結(jié)底層,再采用等離子噴涂表面工作層;或先采用超音速火焰噴涂粘結(jié)底層,再采用等離子噴涂表面工作層,該組合是目前飛機(jī)發(fā)動(dòng)機(jī)用熱障涂層的典型工藝。
3.多層結(jié)構(gòu)
多層結(jié)構(gòu)是指涂層層數(shù)達(dá)三層或三層以上的涂層結(jié)構(gòu),在實(shí)際應(yīng)用中并不常用,只在特殊工況條件下才采用。
有的多層結(jié)構(gòu)通過采用多種成分涂層來(lái)滿足一種性能要求,例如,為了開發(fā)出能夠滿足柴油發(fā)動(dòng)機(jī)用的長(zhǎng)壽命厚熱障涂層,Robert等采用了熱膨脹系數(shù)非常接近的三層結(jié)合底層來(lái)降低涂層熱應(yīng)力,其涂層結(jié)構(gòu)如圖所示,各層涂層的熱膨脹行為如右圖所示。由于基體材料4140、NiCrAlY、FeCrAlY、FeCoNiCrAl和ZrO2-Y2O3之間膨脹系數(shù)屬于逐漸變化的,從而可以大幅度減小ZrO2-Y2O3涂層與基體之間的熱膨脹不匹配性,從而達(dá)到減小熱應(yīng)力、延長(zhǎng)使用壽命的目的。
多層結(jié)構(gòu)示意圖
有的多層結(jié)構(gòu)則具有多種功能,例如,為了顯著提高汽輪機(jī)用熱障涂層的使用壽命和工作可靠性,Leed等人提出在金屬粘結(jié)層和熱障涂層之間增加阻止氧擴(kuò)散涂層,并在金屬粘結(jié)層和阻止氧擴(kuò)散涂層、熱障涂層和阻止氧擴(kuò)散涂層之間增加梯度過渡層,以阻礙氧擴(kuò)散到金屬粘結(jié)層,形成脆性的金屬-陶瓷界面,
4.梯度結(jié)構(gòu)
在熱障涂層中,由于粘結(jié)層金屬和氧化鋯陶瓷的熱膨脹系數(shù)差異較大,這種差異將導(dǎo)致涂層內(nèi)應(yīng)力過大,并且在熱循環(huán)條件下常發(fā)生陶瓷涂層的早期破壞。為了減小內(nèi)應(yīng)力,提高涂層與基體的結(jié)合強(qiáng)度,材料科學(xué)家開始在常規(guī)熱障涂層中引入功能梯度材料制備技術(shù)。
日本學(xué)者新野正之、平井敏雄和渡邊龍三首先提出了FGM的概念,與此同時(shí),中國(guó)學(xué)者袁潤(rùn)章等也提出了FGM的概念,并率先在國(guó)內(nèi)開展了這方面的研究。FGM的設(shè)計(jì)思想是針對(duì)兩種或兩種以上性質(zhì)不同的材料,通過連續(xù)改變其組成、組織、結(jié)構(gòu)與孔隙等要素, 使其內(nèi)部界面消失,得到性能呈連續(xù)平穩(wěn)變化的新型非均質(zhì)復(fù)合材料。借助功能梯度材料的概念,使熱障涂層結(jié)構(gòu)梯度化,相應(yīng)地,熱膨脹系數(shù)將沿涂層厚度方向逐漸變化,從而緩和涂層制備過程中和熱循環(huán)使用過程中產(chǎn)生的熱應(yīng)力。
梯度功能材料為金屬/陶瓷涂層材料無(wú)法解決的熱應(yīng)力緩和問題提供了一種有效的方法,這為熱障涂層的應(yīng)用帶來(lái)了令人興奮的前景,因此倍受世界各國(guó)材料界的重視。德國(guó)與美國(guó)繼日本之后也開始大規(guī)模的研制,我國(guó)也將此研究列入了“863”計(jì)劃,短短十幾年中,迅速發(fā)展取得了令人矚目的成就。航天、航空、飛機(jī)、衛(wèi)星、運(yùn)載火箭等需要耐超高溫的熱屏障材料,核反應(yīng)堆、發(fā)動(dòng)機(jī)用耐熱材料、熱遮蔽材料,使用FGM熱障涂層后可大幅度提高熱效率。
國(guó)內(nèi)已經(jīng)對(duì)功能梯度熱障涂層的抗熱震性能進(jìn)行了研究,王富恥等人對(duì)等離子噴涂方法制備的ZrO2-NiCrAl系梯度熱障涂層在瞬態(tài)熱負(fù)荷下的破壞機(jī)理進(jìn)行了研究,指出:陶瓷面層除了冷卻過程中的徑向拉力超過陶瓷材料的強(qiáng)度導(dǎo)致涂層破壞的模式以外,在加熱的過程中陶瓷層間界面出現(xiàn)大的軸向拉伸應(yīng)力,最終可以導(dǎo)致涂層剝落。朱景川等人對(duì)ZrO2-Ni系梯度熱障涂層的熱沖擊與熱疲勞行為進(jìn)行了研究,結(jié)果表明:ZrO2-Ni系梯度熱障涂層的抗熱沖擊參數(shù)呈梯度分布,熱沖擊破壞符合熱疲勞損傷機(jī)理,裂紋的準(zhǔn)靜態(tài)擴(kuò)展為其控制因素;熱疲勞裂紋在梯度層內(nèi)以微孔聚集、連接方式萌生和擴(kuò)展,而在梯度層間無(wú)橫向貫穿裂紋,克服了傳統(tǒng)涂層的熱應(yīng)力剝落問題。黃維剛對(duì)ZrO2-NiCoCrAlY系梯度熱障涂層進(jìn)行了研究,認(rèn)為去應(yīng)力退火可以進(jìn)一步提高涂層的抗熱沖擊性能。
文章內(nèi)容來(lái)源于:熱噴涂與在制造